Sectional Charts
When planning a flight, true course measurements should be made at a meridian near the midpoint of the course because the angles formed by lines of longitude and latitude vary from point to point.

Maximum elevation figures show the maximum elevation (terrain or obstacle) for that quadrangle.

The top of the obstruction is 1119 ft MSL, 219 ft AGL.

IR-527 is a military training route with flights above 1500 ft. AGL at speeds in excess of 250 knots.

COMPUTATIONS

Time To Station - Wingtip Method

Turn perpendicular to the station, determine the time to change wingtip bearing to the station by one degree, and multiply that by 60. If it takes 4 minutes to change from the 090 radial to the 080 radial, that is .4 minutes per degree. .4 minutes X 60 = 24 minutes to the station.

Time To Station - Isosceles Triangle Method

When inbound toward a station, if you turn 10 degrees off course, the amount of time it takes to change bearing to the station by 10 degrees is equal to the time to the station.

Correction Angle To Converge At Station

If you have flown off course, and must determine the heading correction necessary to converge on your destination, first compute the correction necessary to parallel the course, then add the angle necessary to converge on your destination in the distance remaining.

Remember that 1 degree of azimuth at 60 miles distance is 1 mile off course.

EXAMPLE: If your distance off course is 6 miles after having flown 45 miles, that is the same as 8 miles off course in 60 miles, so you must turn 8 degrees to parallel the course. If your destination is 120 miles away and you are 6 miles off course, that is the same as being 3 miles off course in 60 miles, so you must turn an additional 3 degrees to converge on your destination.

VOR (VHF Omnidirectional Range)

All radio aids are oriented to magnetic direction.

A radial is a magnetic bearing from a station, or the direction you must fly to go away from the station.

VOR Components

Omnibearing selector (OBS) enables you to select the course you wish to fly. This selector should always agree with your course. If reading a VOR indicator, imagine your aircraft on the same heading as the OBS. Reverse sensing will occur if you fly a heading that is the reciprocal to the bearing selected on the OBS.

TO-FROM flag tells you, if flying the course selected, whether you are getting closer TO or farther FROM the station.

LEFT-RIGHT needle tells you, if flying the course selected, to turn right or left to center the needle and put you on course. A full scale deflection of the left-right needle indicates 10 degrees or more off course.
VOR Accuracy Tests

To test the VOR using a VOR test frequency (VO1~), the VOR should indicate your aircraft on the 360 radial. The LEFT-RIGHT needle should center with OBS of 360 and FROM flag, and OBS of 180 and TO flag. Allowable tolerance is +/− 4 degrees.

To test the VOR while on the ground and using a designated checkpoint, move the aircraft to the designated area on the airport. Set the OBS on the designated radial. Regardless of aircraft heading, the LEFT-RIGHT needle (CDI) should center within plus or minus 4 degrees of that radial with a FROM indication.

To test the VOR while airborne, fly over the designated airborne checkpoint. The needle should center within 6 degrees of the selected radial.

ADF (Automatic Direction Finder)

MH (magnetic heading) + RB (relative bearing) = MBto (magnetic bearing to the station).

Relative bearing is the angle (clockwise) from the nose of the airplane to the station. It is indicated by the needle.

Magnetic bearing to the station is the direction you must travel to fly to the station. It is computed by adding the magnetic heading to the relative bearing.

Magnetic bearing from the station is the reciprocal of magnetic bearing to the station. It is also the radial on which you are located.

HSI (Horizontal Situation Indicator)

To read an HSI, draw a VOR, then the course line (OBS setting), then whether going TO or FROM, and whether left or right of course. After you have determined airplane location, draw airplane on proper heading. Bearing pointer also shows your position.

5466. H317 COM
An airplane descends to an airport under the following conditions:
Cruising altitude 6,500 ft
Airport elevation 700 ft
Descends to 800 ft AGL
Rate of descent 500 ft/min
Average true airspeed 110 kts
True course 335°
Average wind velocity 060° at 15 kts
Variation 3°W
Deviation +2°
Average fuel consumption 8.5 gal/hr
Determine the approximate time, compass heading, distance, and fuel consumed during the descent.
A) 10 minutes, 348°, 18 NM, 1.4 gallons.
B) 10 minutes, 355°, 17 NM, 2.4 gallons.
C) 12 minutes, 346°, 18 NM, 1.6 gallons.

5467. An airplane descends to an airport under the following conditions:
Cruising altitude 7,500 ft.
Airport elevation 1,300 ft
Descends to 800 ft AGL
Rate of descent 300 ft/min
Average true airspeed 120 kts
True course 165°
Average wind velocity 240° at 20 kts
Variation 4°E
Deviation -2°
Average fuel consumption 9.6 gal/hr
Determine the approximate time, compass heading, distance, and fuel consumed during the descent.
A) 16 minutes, 168°, 30 NM, 2.9 gallons.
B) 18 minutes, 164°, 34 NM, 3.2 gallons.
C) 18 minutes, 168°, 34 NM, 2.9 gallons.

NOTE: CORRECT ANSWER IN BOLD ITALICS
An airplane descends to an airport under the following conditions:
Cruising altitude 10,500 ft
Airport elevation 1,700 ft
Descends to 1,000 ft AGL
Rate of descent 600 ft/mm
Average true airspeed 135 kts
True course 263°
Average wind velocity 330° at 30 kts
Variation 7°E
Deviation +3°
Average fuel consumption 11.5 gal/hr

Determine the approximate time, compass heading, distance, and fuel consumed during the descent.

A) 9 minutes, 274°, 26 NM, 2.8 gallons.
B) 13 minutes, 274°, 28 NM, 2.5 gallons.
C) 13 minutes, 271°, 26 NM, 2.5 gallons.

If fuel consumption is 80 pounds per hour and groundspeed is 180 knots, how much fuel is required for an airplane to travel 460 NM?

A) 205 pounds.
B) 212 pounds.
C) 460 pounds.

If an airplane is consuming 95 pounds of fuel per hour at a cruising altitude of 6,500 feet and the groundspeed is 173 knots, how much fuel is required to travel 450 NM?

A) 248 pounds.
B) 265 pounds.
C) 284 pounds.

If an airplane is consuming 12.5 gallons of fuel per hour at a cruising altitude of 8,500 feet and the groundspeed is 145 knots, how much fuel is required to travel 435 NM?

A) 27 gallons.
B) 34 gallons.
C) 38 gallons.

If an airplane is consuming 9.5 gallons of fuel per hour at a cruising altitude of 6,000 feet and the groundspeed is 135 knots, how much fuel is required to travel 490 NM?

A) 27 gallons.
B) 30 gallons.
C) 35 gallons.

If an airplane is consuming 14.8 gallons of fuel per hour at a cruising altitude of 7,500 feet and the groundspeed is 167 knots, how much fuel is required to travel 560 NM?

A) 50 gallons.
B) 53 gallons.
C) 57 gallons.

If fuel consumption is 14.7 gallons per hour and groundspeed is 157 knots, how much fuel is required for an airplane to travel 612 NM?

A) 58 gallons.
B) 60 gallons.
C) 64 gallons.

Determine the wind direction and speed.

A) 020° and 32 knots.
B) 030° and 38 knots.
C) 200° and 32 knots.

Determine the wind direction and speed.

A) 020° and 32 knots.
B) 030° and 38 knots.
C) 200° and 32 knots.

Determine the wind direction and speed.

A) 095° and 19 knots.
B) 113° and 19 knots.
C) 238° and 18 knots.

You have flown 52 miles, are 6 miles off course, and have 118 miles yet to fly. To converge on your destination, the total correction angle would be

A) 3°.
B) 6°.
C) 10°.

To converge at the destination, the total correction angle would be

A) 4°.
B) 6°.
C) 10°.

NOTE: CORRECT ANSWER IN BOLD ITALICS
True course measurements on a Sectional Aeronautical Chart should be made at a meridian near the midpoint of the course because the

A) values of isogonic lines change from point to point.
B) angles formed by isogonic lines and lines of latitude vary from point to point.
C) angles formed by lines of longitude and the course line vary from point to point.

5481. GIVEN:
Wind 175° at 20 kts
Distance 135 NM
True course 075°
True airspeed 80 kts
Fuel consumption 105 lb/hr

Determine the time en route and fuel consumption.

A) 1 hour 28 minutes and 73.2 pounds.
B) 1 hour 38 minutes and 158 pounds.
C) 1 hour 40 minutes and 175 pounds.

5488.
An airplane departs an airport under the following conditions:
Airport elevation 1,000 ft
Cruise altitude 9,500 ft
Rate of climb 500 ft/mm
Average true airspeed 135 kts
True course 215°
Average wind velocity 290° at 20 kts
Variation 3°W
Deviation -3°
Average fuel consumption 13 gal/hr

Determine the approximate time, compass heading, distance, and fuel consumed during the climb.

A) 14 minutes, 234°, 26 NM, 3.9 gallons.
B) 17 minutes, 224°, 36 NM, 3.7 gallons.
C) 17 minutes, 242°, 31 NM, 3.5 gallons.

5489.
An airplane departs an airport under the following conditions:
Airport elevation 1,500 ft
Cruise altitude 9,500 ft
Rate of climb 500 ft/mm
Average true airspeed 160 kts
True course 145°
Average wind velocity 080° at 15 kts
Variation 5°E
Deviation -3°
Average fuel consumption 14 gal/hr

Determine the approximate time, compass heading, distance, and fuel consumed during the climb.

A) 14 minutes, 128°, 35 NM, 3.2 gallons.
B) 16 minutes, 132°, 41 NM, 3.7 gallons.
C) 16 minutes, 128°, 32 NM, 3.8 gallons.

5490.
Which is true about homing when using ADF during crosswind conditions? Homing

A) to a radio station results in a curved path that leads to the station.
B) is a practical navigation method for flying both to and from a radio station.
C) to a radio station requires that the ADF have an automatically or manually rotatable azimuth.

5491.
Which is true regarding tracking on a desired bearing when using ADF during crosswind conditions?

A) To track outbound, heading corrections should be made away from the ADF pointer.
B) When on the desired track outbound with the proper drift correction established, the ADF pointer will be deflected to the windward side of the tail position.
C) When on the desired track inbound with the proper drift correction established, the ADF pointer will be deflected to the windward side of the nose position.

5492.
An aircraft is maintaining a magnetic heading of 265° and the ADF shows a relative bearing of 065°. This indicates that the aircraft is crossing the

A) 065° magnetic bearing FROM the radio beacon.
B) 150° magnetic bearing FROM the radio beacon.
C) 330° magnetic bearing FROM the radio beacon.

5493.
The magnetic heading is 315° and the ADF shows a relative bearing to a radio beacon is 140°. The magnetic bearing FROM the radio beacon would be

A) 095°
B) 175°
C) 275°
5494. The magnetic heading is 350° and the relative bearing to a radiobeacon is 240°. What would be the magnetic bearing TO that radiobeacon?

A) 050°
B) 230°
C) 295°

5495. If the ADF is tuned to a radiobeacon. If the magnetic heading is 040° and the relative bearing is 290°, the magnetic bearing TO that radiobeacon would be

A) 150°
B) 285°
C) 330°

5496. If the relative bearing to a nondirectional radiobeacon is 045° and the magnetic heading is 355°, the magnetic bearing TO that radiobeacon would be

A) 040°
B) 065°
C) 220°

5497. If the aircraft continues its present heading as shown in instrument group 3, what will be the relative bearing when the aircraft reaches the magnetic bearing of 030° FROM the NDB?

A) 030°
B) 060°
C) 240°

5498. At the position indicated by instrument group 1, what would be the relative bearing if the aircraft were turned to a magnetic heading of 090°?

A) 150°
B) 190°
C) 250°

5499. At the position indicated by instrument group 1, to intercept the 330° magnetic bearing to the NDB at a 30° angle, the aircraft should be turned

A) left to a heading of 270°.
B) right to a heading of 330°.
C) right to a heading of 360°.

NOTE: CORRECT ANSWER IN BOLD ITALICS
5500. H348 COM
Which situation would result in reverse sensing of a VOR receiver?
A) Flying a heading that is reciprocal to the bearing selected on the OBS.
B) Setting the OBS to a bearing that is 90° from the bearing on which the aircraft is located.
C) Failing to change the OBS from the selected inbound course to the outbound course after passing the station.

NOTE: CORRECT ANSWER IN BOLD ITALICS

5501. H348 COM
To track outbound on the 180 radial of a VOR station, the recommended procedure is to set the OBS to
A) 360° and make heading corrections toward the CDI needle.
B) 180° and make heading corrections away from the CDI needle.
C) 180° and make heading corrections toward the CDI needle.

5502. H348 COM
To track inbound on the 215 radial of a VOR station, the recommended procedure is to set the OBS to
A) 215° and make heading corrections toward the CDI needle.
B) 215° and make heading corrections away from the CDI needle.
C) 035° and make heading corrections toward the CDI needle.

5506. I08 COM
(Refer to figure 17.) Which illustration indicates that the airplane will intercept the 060 radial at a 60° angle inbound, if the present heading is maintained?
A) 6.
B) 4.
C) 5.

5507. I08 COM
(Refer to figure 17.) Which statement is true regarding illustration 2, if the present heading is maintained? The airplane will
A) cross the 180 radial at a 45° angle outbound.
B) intercept the 225 radial at a 45° angle.
C) intercept the 360 radial at a 45° angle inbound.

5508. I08 COM
(Refer to figure 17.) Which illustration indicates that the airplane will intercept the 060 radial at a 75° angle outbound, if the present heading is maintained?
A) 6.
B) 4.
C) 5.

5509. I08 COM
(Refer to figure 17.) Which illustration indicates that the airplane should be turned 150° left to intercept the 360 radial at a 60° angle inbound?
A) 1.
B) 2.
C) 3.
Figure 17 - Horizontal Situation Indicator (HSI)

Figure 18 - Magnetic Heading/Radio Compass

Figure 19 - Magnetic Heading/Radio Compass
5510. I08 COM
(Refer to figure 17.) Which is true regarding illustration 4, if the present heading is maintained? The airplane will
A) cross the 060 radial at a 15° angle.
B) intercept the 240 radial at a 30° angle.
C) cross the 180 radial at a 75° angle.

5511. I08 COM
(Refer to figure 18.) To intercept a magnetic bearing of 240° FROM at a 030° angle (while outbound), the airplane should be turned
A) left 065°.
B) left 125°.
C) right 270°.

5512. I08 COM
(Refer to figure 18.) If the airplane continues to fly on the heading as shown, what magnetic bearing FROM the station would be intercepted at a 35° angle outbound?
A) 035°.
B) 070°.
C) 215°.

5513.
(Refer to figure 19.) If the airplane continues to fly on the magnetic heading as illustrated, what magnetic bearing FROM the station would be intercepted at a 35° angle?
A) 090°.
B) 270°.
C) 305°.

5514.
(Refer to figure 19.) If the airplane continues to fly on the magnetic heading as illustrated, what magnetic bearing FROM the station would be intercepted at a 30° angle?
A) 090°.
B) 270°.
C) 310°.

5515. I08 COM
The relative bearing on an ADF changes from 265° to 260° in 2 minutes of elapsed time. If the groundspeed is 145 knots, the distance to that station would be
A) 26 NM.
B) 37 NM.
C) 58 NM.

5516. I08 COM
The ADF indicates a wingtip bearing change of 10° in 2 minutes of elapsed time, and the TAS is 160 knots. What is the distance to the station?
A) 15 NM.
B) 32 NM.
C) 36 NM.

5517. I08 COM
With a TAS of 115 knots, the relative bearing on an ADF changes from 090° to 095° in 1.5 minutes of elapsed time. The distance to the station would be
A) 12.5 NM.
B) 24.5 NM.
C) 34.5 NM.

5518.
GIVEN:
Wingtip bearing change 5°
Time elapsed between bearing change 5min
True airspeed 115 kts
The distance to the station is
A) 36 NM.
B) 57.5 NM.
C) 115 NM.

5519. I08 COM
The ADF is tuned to a nondirectional radiobeacon and the relative bearing changes from 095° to 100° in 1.5 minutes of elapsed time. The time en route to that station would be
A) 18 minutes.
B) 24 minutes.
C) 30 minutes.

5520. I08 COM
The ADF is tuned to a nondirectional radiobeacon and the relative bearing changes from 270° to 265° in 2.5 minutes of elapsed time. The time en route to that beacon would be
A) 9 minutes.
B) 18 minutes.
C) 30 minutes.

5521. I08 COM
The ADF is tuned to a nondirectional radiobeacon and the relative bearing changes from 085° to 090° in 2 minutes of elapsed time. The time en route to the station would be
A) 15 minutes.
B) 18 minutes.
C) 24 minutes.

5522. I08 COM
If the relative bearing changes from 090° to 100° in 2.5 minutes of elapsed time, the time en route to the station would be
A) 12 minutes.
B) 15 minutes.
C) 18 minutes.
The ADF is tuned to a nondirectional radiobeacon and the relative bearing changes from 090° to 100° in 2.5 minutes of elapsed time. If the true airspeed is 90 knots, the distance and time en route to that radiobeacon would be

A) 15 miles and 22.5 minutes.
B) 22.5 miles and 15 minutes.
C) 32 miles and 18 minutes.

5524. GIVEN:
Wing tip bearing change 10°
Elapsed time between bearing change 4 min
Rate of fuel consumption 11 gal/hr

Calculate the fuel required to fly to the station.

A) 4.4 gallons.
B) 8.4 gallons.
C) 12 gallons.

5525. GIVEN:
Wingtip bearing change 5°
Elapsed time between bearing change 6 min
Rate of fuel consumption 12 gal/hr

The fuel required to fly to the station is

A) 8.2 gallons.
B) 14.4 gallons.
C) 18.7 gallons.

5526. GIVEN:
Wingtip bearing change 15°
Elapsed time between bearing change 6 min
Rate of fuel consumption 8.6 gal/hr

Calculate the approximate fuel required to fly to the station.

A) 3.44 gallons.
B) 6.88 gallons.
C) 17.84 gallons.

5527. GIVEN:
Wingtip bearing change 15°
Elapsed time between bearing change 7.5 mm
True airspeed 85 kts
Rate of fuel consumption 9.6 gal/hr

The time, distance, and fuel required to fly to the station is

A) 30 minutes; 42.5 miles; 4.80 gallons.
B) 32 minutes; 48 miles; 5.58 gallons.
C) 48 minutes; 48 miles; 4.58 gallons.

5528. GIVEN:
While maintaining a constant heading, a relative bearing of 15° doubles in 6 minutes. The time to the station being used is

A) 3 minutes.
B) 6 minutes.
C) 12 minutes.

5529. GIVEN:
While maintaining a constant heading, the ADF needle increases from a relative bearing of 045° to 090° in 5 minutes. The time to the station being used is

A) 5 minutes.
B) 10 minutes.
C) 15 minutes.

5530. GIVEN:
While cruising at 135 knots and on a constant heading, the ADF needle decreases from a relative bearing of 315° to 270° in 7 minutes. The approximate time and distance to the station being used is

A) 7 minutes and 16 miles.
B) 14 minutes and 28 miles.
C) 19 minutes and 38 miles.

5531. GIVEN:
While maintaining a constant heading, a relative bearing of 10° doubles in 5 minutes. If the true airspeed is 105 knots, the time and distance to the station being used is approximately

A) 5 minutes and 8.7 miles.
B) 10 minutes and 17 miles.
C) 15 minutes and 31.2 miles.

5532. GIVEN:
When checking the course sensitivity of a VOR receiver, how many degrees should the OBS be rotated to move the CDI from the center to the last dot on either side?

A) 5° to 10°.
B) 10° to 12°.
C) 18° to 20°.

5533. GIVEN:
An aircraft 60 miles from a VOR station has a CDI indication of one-fifth deflection, this represents a course centerline deviation of approximately

A) 6 miles.
B) 2 miles.
C) 1 mile.

NOTE: CORRECT ANSWER IN BOLD ITALICS
5534. I08 COM
(Refer to figure 20.) Using instrument group 3, if the aircraft makes a 180° turn to the left and continues straight ahead, it will intercept which radial?

A) 135 radial.
B) 270 radial.
C) 360 radial.

5535. I08 COM
(Refer to figure 20.) Which instrument shows the aircraft in a position where a 180° turn would result in intercepting the 150 radial at a 30° angle?

A) 2.
B) 3.
C) 4.

5536. I08 COM
(Refer to figure 20.) Which instrument shows the aircraft in a position where a straight course after a 90° left turn would result in intercepting the 180 radial?

A) 2.
B) 3.
C) 4.

5537. I08 COM
(Refer to figure 20.) Which instrument shows the aircraft to be northwest of the VORTAC?

A) 1.
B) 2.
C) 3.

5538. I08 COM
(Refer to figure 20.) Which instrument(s) show(s) that the aircraft is getting further from the selected VORTAC?

A) 4.
B) 1 and 4.
C) 2 and 3.

5539. I08 COM
While maintaining a magnetic heading of 270° and a true airspeed of 120 knots, the 360 radial of a VOR is crossed at 1237 and the 350 radial is crossed at 1244. The approximate time and distance to this station are

A) 42 minutes and 84 NM.
B) 42 minutes and 91 NM.
C) 44 minutes and 96 NM.

NOTE: CORRECT ANSWER IN BOLD ITALICS
5540. I08 COM
(Refer to figure 21.) If the time flown between aircraft positions 2 and 3 is 13 minutes, what is the estimated time to the station?

A) 13 minutes.
B) 17 minutes.
C) 26 minutes.

5541. I08 COM
(Refer to figure 22.) If the time flown between aircraft positions 2 and 3 is 8 minutes, what is the estimated time to the station?

A) 8 minutes.
B) 16 minutes.
C) 48 minutes.

5542. I08 COM
(Refer to figure 23.) If the time flown between aircraft positions 2 and 3 is 13 minutes, what is the estimated time to the station?

A) 7.8 minutes.
B) 13 minutes.
C) 26 minutes.

5543. I08 COM
(Refer to figure 24.) If the time flown between aircraft positions 2 and 3 is 15 minutes, what is the estimated time to the station?

A) 15 minutes.
B) 30 minutes.
C) 60 minutes.

5544. I08 COM
Inbound on the 040 radial, a pilot selects the 055 radial, turns 15° to the left, and notes the time. While maintaining a constant heading, the pilot notes the time for the CDI to center is 15 minutes. Based on this information, the ETE to the station is

A) 8 minutes.
B) 15 minutes.
C) 30 minutes.

5545. Inbound on the 090 radial, a pilot rotates the OBS 010° to the left, turns 010° to the right, and notes the time. While maintaining a constant heading, the pilot determines that the elapsed time for the CDI to center is 8 minutes. Based on this information, the ETE to the station is

A) 8 minutes.
B) 16 minutes.
C) 24 minutes.

5546. I08 COM
Inbound on the 315 radial, a pilot selects the 320 radial, turns 5° to the left, and notes the time. While maintaining a constant heading, the pilot notes the time for the CDI to center is 12 minutes. The ETE to the station is

A) 10 minutes.
B) 12 minutes.
C) 24 minutes.

5547. I08 COM
Inbound on the 190 radial, a pilot selects the 195 radial, turns 5° to the left, and notes the time. While maintaining a constant heading, the pilot notes the time for the CDI to center is 10 minutes. The ETE to the station is

A) 10 minutes.
B) 15 minutes.
C) 20 minutes.

5551. How should the pilot make a VOR receiver check when the aircraft is located on the designated checkpoint on the airport surface?

A) Set the OBS on 180° plus or minus 4°; the CDI should center with a FROM indication.
B) Set the OBS on the designated radial. The CDI must center within plus or minus 4° of that radial with a FROM indication.
C) With the aircraft headed directly toward the VOR and the OBS set to 000°, the CDI should center within plus or minus 4° of that radial with a TO indication.

5552. J01 COM
When using VOT to make a VOR receiver check, the CDI should be centered and the OBS should indicate that the aircraft is on the

A) 090 radial.
B) 180 radial.
C) 360 radial.
When the CDI needle is centered during an airborne VOR check, the omnibearing selector should read

A) within 4° of the selected radial.
B) within 6° of the selected radial.
C) 0° TO, only if you are due south of the VOR.

For IFR operations off established airways, ROUTE OF FLIGHT portion of an IFR flight plan should list VOR navigational aids which are no more than

A) 40 miles apart.
B) 70 miles apart.
C) 80 miles apart.

Which is true relating to the blue and magenta colors used to depict airports on Sectional Aeronautical Charts?

A) Class E airports are shown in blue; Class C and D are magenta.
B) Class B airports are shown in blue; Class D and E are magenta.
C) Class E airports are shown in magenta; Class B, C, and D are blue.

This thin black shaded line is most likely

A) an arrival route.
B) a military training route.
C) a state boundary line.

(Refer to figure 53, point 2) The 16 indicates

A) an antenna top at 1,600 feet AGL.
B) the maximum elevation figure for that quadrangle.
C) the minimum safe sector altitude for that quadrangle.

(Refer to figure 52, point 6) Mosier Airport is

A) an airport restricted to use by private and recreational pilots.
B) a restricted military stage field within restricted airspace.
C) a nonpublic use airport.

(Refer to figure 54, point 6) The Class C airspace at Metropolitan Oakland International (OAK) which extends from the surface upward has a ceiling of

A) both 2,100 feet and 3,000 feet MSL.
B) 8,000 feet MSL.
C) 2,100 feet AGL.